QUANTUM TIME
By



In presenting this thesis in partial fulfilment of the requirements for an advanced degree at
the University of British Columbia, I agree that the Library shall make it freely available
for reference and study. I further agree that permission for extensive copying of this
thesis for scholarly purposes may be granted by the head of my department or by his
or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Department of Physics and Astronomy
The University of British Columbia
2075 Wesbrook Place

Vancouver, Canada

V6T 1W5

Date:




Abstract

In quantum mechanics, time plays a role unlike any other observable. We find that
measuring whether an event happened, and measuring when an event happened are fun-
damentally different — the two measurements do not correspond to compatible observables
and interfere with each other. We also propose a basic limitation on measurements of

the arrival time of a free particle given by 1/E) where E}, is the particle’s kinetic energy.
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1.1 Dual Measurements

One of the first lessons of quantum mechanics was that a property of a system does not
correspond to an element of reality until it is measured. It makes no sense to talk about
the position of a particle or the momentum of the particle, in and of itself. It is only
when we measure a physical quantity that we can actually say that a system possesses
it. The particle does not have a position until its position is actually measured.
Ordinarily in quantum mechanics, one is interested in measuring properties of a sys-
tem at a particular time ¢. One might want to know a particle’s position, momentum, or
spin, and the measurement of this quantity occurs at a certain time. For experiments at

a fixed time, quantum mechanics provides us with a useful formalism to describe reality.
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the time becomes the observable one is trying to measure.

Classically, the time of an event can be made into an observable just like any other
and this time can be measured in a variety of ways, all of which give the same result. One
can simply invert the equations of motion of the system to find the time that an event
occurs ', and then measure the values of the canonical variables (generalized coordinates
and conjugate momenta). Since classically there is no uncertainty relation preventing the
measurement of all the coordinates and conjugate momenta simultaneously, there is no
limitation for finding the event’s time. One could also continually monitor the system to
determine the precise time when the event occurred. Since one can make the interaction
between the system and the measuring apparatus as small as one likes, this measurement
need not disturb the evolution of the system. Finally, one can also couple a clock to the
system in such a way that the clock stops when the event occurs. All these methods yield
the same results, and work to any desired accuracy.

Dual measurements, are quite common in modern laboratory experiments. In particle
physics one often wants to know the time that certain collisionp u t icso S et euD when

Pauli [8] was the first to u tnonstrate that there was no operata associated with

time. A time operata must be conj
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the time-of-arrival.

The interest in a quantum mechanical time operator stems in part from the troubling
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It is space-time which is the element of reality in general relativity.

These coordinates are, of course, subject to coordinate transformations, and in par-
ticular, the theory is invariant under reparametrization of the time coordinate. One
consequence of this, is that if one tries to canonically quantize Einstein’s theory of gravi-
ty in a closed system, one finds that the wave-function must satisfy the Wheeler-DeWitt
equation

H\Il(gab,wab) =0 (11)

where the wave function depends on the 3-metric and conjugate momenta and H is
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exist many ambiguities in the role of time in quantum mechanics. Our hope is that a
better understanding of time in the arena of quantum mechanics will benefit and inform
research in the field of quantum gravity. At the end of this thesis, we will discuss some

of the connections between the problem of time in quantum gravity and our research.

1.2 Differences Between Measurements of Space and Measurements of Time

Ever since Einstein’s theory of special relativity, we have been encouraged to think of
time and space on an equal footing. However, even classically, time and space are quite
different as our common experience tells us. Objects move constantly forward in time an
a manner very different to the way they move through space. Although we will discuss
in more detail the differences between quantum measurements of ordinary observables
and measurements of time in Chapter 2, it may be instructive to roughly outline the
differences between measurements of a particle’s position at a fixed time, and the time a
particle is found at a particular location.

In standard quantum mechanics, the probability that a particle is found at a given

location X at time ¢ is given by
PUX) = (X, ) . (1.2)

If we know v (z,0) for all x then the system is completely described and we can easily
compute this probability distribution at an instant of time. If we know the Hamiltonian
of the system, then using the Schrédinger equation we can also compute ¢ (x,t) at any
time t. This probability distribution corresponds to results of a measurement of position
at a particular time. Quantum mechanics gives a well defined answer to the question,
“svhere is the particle at time ¢?7”

However, it is also perfectly natural to ask “at what time is the particle at a certain

location.” Here, quantum mechanics does not seem to provide an unambiguous answer.
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At first sight it seems that the probability distribution P,(7T) to find the particle at a
certain time at the location x is simply |¢(z, T)|?, However, [¢(z,T)|?, does not represent
a probability in tizme, since it is not normalized with respect to 7.

One might be tempted therefore, to consider the quantity

py7) - Y@ TP

= T, ) e (13)

This normalization depends on the particular state being measured, and can only be
done if one knows the state ¢(x,t) at all times ¢ (infinitely far in the past and future).
There are also states for which the particle is never found at the position x, in which
case the expression above is undefined. Not-withstanding this, one might argue that this
quantity gives one a relative probability that the particle is found at the location x at
time 7" (if the measurement is made at that time 7'), as opposed to another time 7" (if
the measurement is made at time 7").

However, the expression above certainly does not yield the probability in time to
detect the particle. One reason for this failure is that a particle may be detected at a
location X at many different times ¢ (e.g. I can be found in my office at many different
times in the day). On the other hand, if at time ¢ a particle is detected at location X,
then we can say with certainty that at the same time ¢, the particle was not at any other
location X' (e.g. at nine a.m. I am in bed, and therefore, I cannot also be in my office).
Equation (1.3) does not give a proper probability distribution as the various outcomes are
not disjoint. P,(7) is not a probability distribution in time in the sense usually reserved
for probability distributions in quantum mechanics. P,(T) is very different from P;(X)
and has different properties (as we will see in the next chapter).

This leads us to consider the time of first arrival of a particle, since a particle can
only arrive once to a particular location. In order to measure the arrival time one cannot

use expression (1.3) since one needs to detect the particle at time ¢4, and also know that
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the particle was not there at any previous time. In other words, one must continuously
monitor the location x4 in order to find out when the particle arrives. However, this
continuous measurement procedure has it’s own difficulty, and also emphasizes the prob-
lem with the previous probability distribution. Namely, that the probability to find a
particle at t = T is generally not independent of the probability to find the particle at
some other time ¢ = T". i.e.. if II,, is the projector onto the position z 4, then in the

Heisenberg representation 3
[Ty, (£), T, ()] # 0. (1.4)

Measurements made at different times disturb each other. We will see in Section 2.2 that
this is one of the properties of ordinary measurements which measurements in time vio-
late. Measurements made at different times do not commute. Therefore the probability
distribution obtained from this measurement procedure, although well defined, does not
give a probability distribution in time.

Von Neumann measurements * happen at a certain time. One measures the particle’s
position at time ¢. Even a continuous measurement at a particular location is a series of
measurements at a certain time. Each instant that the Geiger counter doesn’t click, it is
measuring the fact that a particle has not entered it. Furthermore, operators which are
used to measure the time-of-arrival to the location xz 4, are not measured at x 4, but rather
at an instant in time. In quantum mechanics, measurements made at different times can
disturb each other, which can make measurements of the time of an event problematic.

The probability of detecting a particle at a certain location at time ¢ is not independent




Chapter 1. Introduction 10

of detecting the particle at some other time #'.

1.3 Inaccuracies and Uncertainties

The measurement of an observable corresponding to a self-adjoint operator can be as
accurate as one wishes. This is true despite any uncertainty relations which govern
various sets of observables. The position, or momentum of a particle (but not both)
can be measured to any desired precision. Consider two observables A and B srhich do
not evolve in time, and whose commutator is 7 (in units where 7 = 1). Imagine that
we have an ensemble of identical systems prepared in some initial state. On half the
ensemble, we can measure A, and on the other half, we can measure B. Each individual
measurement can be as accurate as we wish. An extraordinary experimentalist can reduce
the inaccuracies in the measurement to almost zero, and can get a particular value for
each measurement. The experimentalist may have a dial on her device which will point to
the value of A after the measurement. She will have to make sure that initially the pointer
on her dial points almost exactly to zero, and then after each run of her experiment, she
measures the position of the dial very accurately to determine the value of A.

If we then plot all of the measurements of A and all of the measurements of B, we
will find a distribution of measurements which have a natural width of AA and AB
respectively. One then finds that no matter what initial state we choose, AAAB > 1.
There is an uncertainty relation between the distributions of A and B, but there are no
theoretical limitations on the accuracy of each individual measurement of A or B.

The experimentalist does not have to make her measurements totally precise. She
could, for example, start off the experiment with her dial in a state where the initial
position of the needle is uncertain. An uncertainty in the initial pointer position will

result in her measurement being inaccurate. When she measures the final position of her
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of the probability current to measure the time at which a particle arrives to a certain
location. The discussion suggests that the difference between time and other observables
is not merely formal.

The central result of the thesis is contained in Chapter 3 where we discuss the problem
of the time-of-arrival of a particle to a particular location. It is argued that the time-of-

arrival cannot be precisely defined and measured in quantum mechanics. By constructing
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relationship between these modified operators, and the direct measurements discussed
in Chapters 2 and 3, and argue that a measurement of the time-of-arrival operator does
not correspond to these continuous measurements. Unlike the classical case, in quantum
mechanics the result of a measurement of the time-of-arrival operator may have nothing
to do with the time-of-arrival to z = 4.

There has been renewed interest in time-of-arrival operators following the suggestion
by Grot, Rovelli, and Tate, that one can modify the low momentum behavior of the oper-
ator slightly in such away as to make it self-adjoint [9]. We show that such a modification
results in the difficulty that the eigenstates are drastically altered. In an eigenstate of the
modified time-of-arrival operator, the particle, at the predicted time-of-arrival, is found
far away from the point of arrival with probability 1/2.

The bound of 1/E} on the accuracy of time-of-arrival measurements is based on
calculations done using numerous measurement models corresponding to specific Hamil-
tonians, as well as more general considerations. However, because the limitation is based
on dynamical considerations and not kinematic ones, a formal proof of the limitation may
not exist. For example, a proof of the Heisenberg uncertainty relation relies only on the
properties of specific operators, while our inaccuracy relation is a statement not about
operators, but about measurements (and therefore, involves the dynamical considerations
of the actual measurement). Perhaps by making certain restrictive assumptions about
the Hamiltonian one might be able to construct a formal proof. Such a proof would have
to take into account the measurement model which will be discussed in Section 3.3.3 in
which we show that if one has prior information about the wavefunction, and if the wave-
function is almost an eigenstate of energy (i.e. its time of arrival is completely uncertain),
then one can measure the time of arrival to an accuracy better than 1/E;. One therefore
expects that a formal proof will not only have to involve making assumptions about the

interaction Hamiltonian, but also the initial state of the wave function. The existence of
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a formal proof for our inaccuracy limitation remains an interesting open question.

While we know of no formal proof for the inaccuracy limitation for time-of-arrival, one
can make more general statements about measurements of ”traversal time”. In Chap-
ter 5 we consider the problem of a free particle which traverses a distance L and argue
that a violation of the above limitation for the traversal-time implies a violation of the
Heisenberg uncertainty relation for z and p. This result does not depend on the details
of the model being used in the measuring process. Measurements of traversal-time are
dual to measurements of traversal distance, and it can be shown that one can measure
the distance a particle travels to any desired precision. This chapter also contains a fur-
ther discussion on the difference between what we call “inaccuracy” limitations, which
constrain the precision with which individual measurements are performed, and “uncer-
tainties” which are kinematic quantities which relate to the spread in measurements on
ensembles.

Chapter 6 contains what may be our most interesting result. In it, we examine
whether one can determine the temporal ordering of events. We find that one cannot
measure whether one event occurred in the future or past of another event to arbitrary
accuracy. The minimum inaccuracy for measuring whether a particle arrives to a given
location before or after another particle is given by 1/F where F is the total kinetic energy
of the two particles. We discuss the relationship between this type of measurement, and
coincident counters, as well as Heisenberg’s microscope. We show that in general one
cannot prepare a two particle state where the two particles always arrive within a time
of 1/E of each other. This has interesting consequences for determining the metric
properties of a space-time.

In this thesis we will work in units where h =c =1



