Table of Contents

Abstract						
\mathbf{T}_{i}	able (of Contents	iii			
Li	List of Figures					
D	edica	ation	vii			
${f A}$	ckno	${f wledgements}$	viii			
1	Intr	roduction	1			
	1.1	Dual Measurements	2			
	1.2	Differences Bet een Measurements of Space and Measurements of Time .	7			
	1.3	Inaccuracies and Uncertainties	10			
	1.4	What Lies Ahead	11			
2	$\mathbf{W}\mathbf{h}$	en does an Event Occur	15			
	2.1	Probabilities at a Time and in Time	16			
	2.2	Did it Occur vs. When Did it Occur	17			
	2.3	Time of a Measurement or Arrival	21			
	2.4	Continual Event Monitoring	25			
3	Phy	rsical Clocks and Time-of-Arrival	30			
	3.1	A Limitation on Time-of-Arrival Measurements	31			
	3.2	Free Clocks	33			

	3.3	Measurement of Time-of-Arrival	35
		3.3.1 Measurement ith a clock	36
		3.3.2 T o-level detector ith a clock	40
		3.3.3 Local amplification of kinetic energy	44
		3.3.4 Gradual triggering of the clock	46
		3.3.5 General considerations	49
4	Tin	e-of-Arrival Operators	52
	4.1	Indirect Time-of-Arrival Measurements	53
	4.2	Conditions on A Time-of-Arrival Operator	54
	4.3	Time-of-Arrival Operators vs. Continuous Measurements	56
	4.4	The Modified Time-of-Arrival Operator	60
	4.5	Normalized Time-of-Arrival States	63
	4.6	Contribution to the Norm due to Modification of ${f T}$	67
	4.7	Limited Physical Meaning of Time-of-Arrival Operators	69
5	Tra	versal Time	71
	5.1	A Limitation on Traversal Time Measurements	72
	5.2	Measuring Momentum Through Traversal-Distance	73
	5.3	Measuring Traversal Time	74
	5.4	General Argument for a Minimum Inaccuracy	77
	5.5	From Traversal Time to Barrier Tunneling Time	83
6	Ord	er of Events	85
	6.1	Past and Future	86
	6.2	Which first?	88
	6.3	Coincidence	92

	6.4	Coincident States	97
	6.5	In Which Direction Does the Light Cone Point	99
7	Con	clusion	101
Bi	Bibliography		106
Appendices			110
A	Zero	o-Current Wavefunctions	110
В	Gau	ssian Wave Packet and Clocks	111
\mathbf{C}	Tim	ne-of-Arrival Eigenstates	114

List of Figures

4.1	Unmodified part of time-of-arrival eigenstate. $ _{o}\tau^{+}(x,\tau) ^{2}$ vs. x , ith	
	$\Delta = m$ (solid line), and $\Delta = \frac{m}{10}$ (dashed line). As Δ gets smaller, the	
	probability function gets more and more peaked around the origin	66
4.2	Modified part of time-of-arrival eigenstate. $\frac{1}{\epsilon} _{\epsilon}\tau^{+}(x,\tau) ^{2}$ vs. ϵx , of $\sqrt{\frac{m}{\Delta}}x$.	
	ith $\Delta \epsilon^2 = \frac{m}{10}$ (solid line) and $\Delta \epsilon^2 = \frac{m}{100}$ (dashed line). As Δ or ϵ gets	
	smaller, the probability function drops near the origin, and gro s longer	
	tails hich are exponentially far a ay	67
6.3	A potential hich can be used to measure hich of t o particles came first	
	(given by $V(x,y) = \alpha \delta(\mathbf{x})\theta(-\mathbf{y})$). The ave function for to incoming	
	particles in one dimension looks like a single ave packet in to dimensions	
	travelling to ards the origin.	89
6.4	Potential for measuring hether t o particles are coincident	93
6.5	Phase shifts for coincidence detector $(\delta_1(ka)/\delta_2(ka))$ vs. ka	97